On Morin Configurations of Higher Length

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher Lawrence configurations

Any configuration of lattice vectors gives rise to a hierarchy of higher-dimensional configurations which generalize the Lawrence construction in geometric combinatorics. We prove finiteness results for the Markov bases, Graver bases and facet posets of these configurations, and we discuss applications to the statistical theory of log-linear models.

متن کامل

Voltammetric and spectroscopic studies on binding of antitumor Morin, Morin-Cu complex and Morin-beta-cyclodextrin with DNA.

A systematic comparative study of the binding of antitumor Morin and its complexes with DNA has been investigated in the Britton-Robison (BR) buffer solutions using voltammetric and spectroscopic methods. The results show that Morin molecule, acting as an intercalator, is inserted into the cavity of the beta-cyclodextrin (beta-CD) as well as into the base stacking domain of the DNA double helix...

متن کامل

Status Configurations, Military Service and Higher Education

The U.S. Armed Forces offer educational and training benefits as incentives for service. This study investigates the influence of status configurations on military enlistment and their link to greater educational opportunity. Three statuses (socioeconomic status of origin, cognitive ability and academic performance) have particular relevance for life course options. We hypothesize that young me...

متن کامل

Se p 20 02 HIGHER LAWRENCE CONFIGURATIONS

Any configuration of lattice vectors gives rise to a hierarchy of higher-dimensional configurations which generalize the Lawrence construction in geometric combinatorics. We prove finiteness results for the Markov bases, Graver bases and face posets of these configurations, and we discuss applications to the statistical theory of log-linear models.

متن کامل

Equilibrium configurations of fluids and their stability in higher dimensions

We study equilibrium shapes, stability and possible bifurcation diagrams of fluids in higher dimensions, held together by either surface tension or self-gravity. We consider the equilibrium shape and stability problem of self-gravitating spheroids, establishing the formalism to generalize the MacLaurin sequence to higher dimensions. We show that such simple models, of interest on their own, als...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2020

ISSN: 1073-7928,1687-0247

DOI: 10.1093/imrn/rnaa170